2.1 The Diffusion Equation

The Part IB Methods course is relevant.

1 Background

The conduction of heat down a lagged bar of length L metres may be described by the one-dimensional diffusion equation

$$\frac{\partial \theta}{\partial t} = K \frac{\partial^2 \theta}{\partial x^2} \quad (0 < x < L),$$

(1)

where $\theta(x, t)$ is the temperature (in kelvin) averaged over the cross-section (at distance x metres along the bar and time t seconds), and K is a positive constant, the so-called thermal diffusivity (measured in metres-squared per second). This description is obtained on the basis that

(i) there is negligible heat flux through the sides;

(ii) the heat flux (in the positive x-direction) through the cross section at x is $-AK \frac{\partial \theta}{\partial x}(x, t)$, where A is the (constant) cross-sectional area and k the (constant) thermal conductivity;

(iii) the total heat in $a < x < b$ is

$$A \int_a^b \sigma \rho \theta(x, t) \, dx,$$

(2)

where σ is the (constant) specific heat and ρ the (constant) density, with its rate of change

$$\frac{d}{dt} \left[A \int_a^b \sigma \rho \theta(x, t) \, dx \right] = A\sigma \rho \int_a^b \frac{\partial \theta}{\partial t}(x, t) \, dx$$

(3)

being equal to the net heat flux in

$$-Ak \frac{\partial \theta}{\partial x}(a, t) + Ak \frac{\partial \theta}{\partial x}(b, t) = Ak \int_a^b \frac{\partial^2 \theta}{\partial x^2}(x, t) \, dx$$

(4)

for any a and b, implying (1) with $K = k/\sigma \rho$.

2 Formulation

Suppose that for $t < 0$, the bar is at uniform temperature θ_0, and that for $t \geq 0$, the temperature of one end ($x = 0$) is suddenly altered to a different value θ_1 and thereafter maintained at this value, while the other end ($x = L$) is either insulated or maintained at constant temperature. Equation (1) is therefore to be solved for $t > 0$ subject to the initial condition

$$\theta(x, 0) = \theta_0 \quad \text{for } 0 < x < L,$$

(5)

and to the boundary conditions

$$\theta(0, t) = \theta_1 \quad \text{for } t > 0,$$

(6)

and either

$$\frac{\partial \theta}{\partial x}(L, t) = 0 \quad \text{for } t > 0$$

(7a)

(i.e. vanishing heat flux at the insulated end), or

$$\theta(L, t) = \theta_0 \quad \text{for } t > 0.$$

(7b)

The aim of this project is to study the performance of a simple finite-difference method on this problem, for which numerical solutions can be compared with an analytic one.
3 Analytic Solutions

Question 1
First consider the case of a semi-infinite bar, for which the boundary condition (7a) or (7b) is replaced by
\[
\frac{\partial \theta}{\partial x}(x,t) \to 0 \quad \text{or} \quad \theta(x,t) \to \theta_0 \quad \text{as} \quad x \to \infty, \quad \text{respectively.} \tag{8}
\]

If
\[
\theta(x,t) = \theta_0 + (\theta_1 - \theta_0) F(x,t) , \tag{9}
\]

explain with the help of dimensional analysis why in both cases \(F \) must have the ‘similarity’ form
\[
F(x,t) = f(\xi) , \quad \xi = \frac{x}{(Kt)^{1/2}}. \tag{10}
\]

Show that in both cases
\[
f(\xi) = \text{erfc} \left(\frac{1}{2} \xi \right) \equiv \frac{2}{\sqrt{\pi}} \int_{\xi/2}^{\infty} \exp \left(-u^2 \right) \, du . \tag{11}
\]

Now return to the case of a finite bar and define non-dimensional variables \(X, T \) and \(U \) by
\[
x = LX , \quad t = L^2 K^{-1} T , \quad \theta(x,t) = \theta_0 + (\theta_1 - \theta_0) U(X,T) , \tag{12}
\]
in terms of which the diffusion equation (1) becomes
\[
U_T = U_{XX} \quad \text{for} \quad T > 0 , \quad 0 < X < 1 , \tag{13}
\]
with initial condition
\[
U(X,0) = 0 \quad \text{for} \quad 0 < X < 1 , \tag{14}
\]
and boundary conditions
\[
U(0,T) = 1 \quad \text{for} \quad T > 0 , \tag{15}
\]
and either
\[
U_X(1,T) = 0 \quad \text{for} \quad T > 0 , \tag{16a}
\]
or
\[
U(1,T) = 0 \quad \text{for} \quad T > 0. \tag{16b}
\]

Question 2
First find an analytic solution of the fixed-endpoint-temperature problem (13)–(15) and (16b) in the form
\[
U(X,T) = 1 - X + \sum_{n \geq 1} g_n(T) \sin(n\pi X) , \tag{17}
\]
where the \(g_n(T) \) are to be found. Adapt this method to obtain an (infinite-series) analytic solution of the insulated-end problem (13)–(16a) of the form
\[
U(X,T) = U_s(X) + \sum_{n \geq 1} G_n(T) H_n(X) , \tag{18}
\]
for suitable functions \(U_s(X), G_n(T) \) and \(H_n(X) \).

Programming Task. Write a program to evaluate both analytic solutions by summing a finite number of terms of each series. Tabulate \(U(X,T) \) for both problems at \(T = 0.25 \).
and \(X = 0.125n, n = 0, 1, \ldots, 8 \), and also tabulate the semi-infinite solution (10)–(11) evaluated at these values of \(T \) and \(X \). Plot the non-dimensionalised temperature profiles, \(U \), against \(X \), for all three at \(T = 0.0625, 0.125, 0.25, 0.5, 1.0 \) and 2.0. Also plot the non-dimensionalised heat flux \(-U_X\) at \(X = 0\) for all three against \(T \) over this range.

Explain why you are satisfied that enough terms have been kept in the truncated series to provide ‘sufficiently’ accurate solutions (at least for \(T \geq 0.0625 \); take into account what accuracy will be needed for Question 3 below). Compare how the three sets of temperature profiles evolve in time, and discuss.

4 Numerical Integration

The insulated-end problem (13)–(16a) is now to be solved numerically as follows. Let the domain \(0 \leq X \leq 1 \) be divided into \(N \) intervals, each of length \(\delta X = 1/N \), and let \(U_T \) be approximated by a first-order forward difference in time:

\[
\frac{\partial U(X,T)}{\partial T} = \frac{U(X,T+\delta T) - U(X,T)}{\delta T} + O(\delta T),
\]

and \(U_{XX} \) by a second-order central difference in space at the current time:

\[
\frac{\partial^2 U(X,T)}{\partial X^2} = \frac{U(X+\delta X,T) - 2U(X,T) + U(X-\delta X,T)}{(\delta X)^2} + O((\delta X)^2),
\]

giving the numerical scheme

\[
U^{m+1}_n = U^n_m + C [U^n_{m+1} - 2U^n_m + U^n_{m-1}],
\]

where \(U^n_m \) is an approximation to \(U(n\delta X, m\delta T) \) and \(C = \delta T/(\delta X)^2 \) (the so-called Courant number). The derivative boundary condition (16a) can be incorporated by solving (21) for \(1 \leq n \leq N \) with \(U^n_N+1 = U^n_N \) for all \(m \geq 0 \); why? You should take \(U^n_0 = 0 \); why?

Question 3

Programming Task. Write a program to implement this numerical scheme, and run it with \(N = 8, 16, 32 \) and \(C = \frac{1}{12}, \frac{1}{6}, \frac{1}{3}, \frac{1}{2} \) and \(\frac{2}{3} \). For the case \(N = 8, C = \frac{1}{2} \):

(i) tabulate both the analytic and the numerical solutions, and the value of the error, at \(T = 0.125, 0.25, 0.5 \) and 1.0;

(ii) plot on the same graph both the analytic and the numerical solutions for \(T = 0.0625, 0.125, 0.25, 0.5, 1.0 \) and 2.0.

Discuss both the stability and the accuracy of the numerical scheme for the different values of \(N \) and \(C \). Are your results consistent with the theoretical order of accuracy of the scheme? Illustrate your discussion with appropriate short tables and/or graphs.

Reference

\[\text{†} \text{ Note that there is a MATLAB function erfc.}\]