1 Numerical Methods

1.3 Parabolic Partial Differential Equations (6 units)

Part II Numerical Analysis is useful but not essential, since the required background can readily be found in the references and elsewhere.

1 Formulation

For times $0 \leq t < \infty$ we wish to solve the diffusion equation

$$\theta_t = \theta_{xx}$$

on the interval $0 \leq x \leq 1$, with boundary conditions

$$\theta(0, t) = f(t) \quad \text{and} \quad \theta(1, t) = 0 \quad \text{for} \quad 0 \leq t < \infty,$$

where $f(t) = t$,

and with initial condition

$$\theta(x, t) = 0 \quad \text{for} \quad t \leq 0, \quad 0 \leq x \leq 1.$$

This is the (non-dimensionalised) initial-value problem for the conduction of heat down a lagged bar when the temperature of one end varies in time. The aim is to study the performance of three simple finite-difference methods applied to this problem, for which the numerical solutions can be compared with an analytic one.

2 Analytic solution

Question 1

(i) To find an analytic solution of the problem first write

$$\theta(x, t) = f(t)(1 - x) + \phi(x, t).$$

Next find the governing equation, boundary conditions and initial condition for $\phi(x, t)$. Thence, with justification, solve for ϕ in terms of a Fourier sine series in x.

(ii) Deduce, either from the Fourier sine series or otherwise, that as $t \to \infty$

$$\phi(x, t) \to -\frac{1}{3}x + \frac{1}{2}x^2 - \frac{1}{6}x^3. \quad (1)$$

(iii) Write a program to compute the analytic solution by summing a finite number of terms of the series, or otherwise.

(iv) Plot θ against x at a few judiciously chosen values of t to illustrate the evolution in time.

(v) How have you satisfied yourself that the solution has been computed to ‘sufficient’ accuracy?

(vi) Discuss the evolution of the temperature in terms of the physics.
3 Numerical Methods

Divide $0 \leq x \leq 1$ into N intervals, each of size $\delta x \equiv 1/N$. The aim is to march the solution forward in time for various time steps δt. It is convenient to introduce the Courant number $\nu = \delta t / (\delta x)^2$. We consider three schemes.

(i) Approximate θ_t by a forward difference in time and θ_{xx} by a spatial central difference at the current time, which gives the numerical scheme

$$\frac{\theta_{m+1}^n - \theta_m^m}{\delta t} = (\delta^2 \theta)_m^m \equiv \frac{\theta_{n+1}^m - 2\theta_m^m + \theta_{n-1}^m}{(\delta x)^2},$$

where θ_m^m is an approximation to $\theta(n\delta x, m\delta t)$.

(ii) Approximate θ_t instead by a central difference in time, so that

$$\frac{\theta_{m+1}^n - \theta_{m-1}^n}{2\delta t} = (\delta^2 \theta)_m^m.$$

In this case you will need scheme (i) in order to make the first step.

(iii) Modify scheme (i) to

$$\frac{\theta_{m+1}^n - \theta_m^m}{\delta t} = \rho (\delta^2 \theta)_{m+1}^m + (1 - \rho) (\delta^2 \theta)_m^m$$

with $0 < \rho \leq 1$. This is now an implicit method, and at each step $(N + 1)$ simultaneous equations have to be solved for the θ_{m+1}^m.

Remarks

(a) The matrix of the simultaneous equations is tridiagonal. Therefore the system may be solved quickly and efficiently by exploiting the sparsity. Your code should make use of the sparsity, e.g. the matrix should be stored in an efficient way, and needless multiplications by zero avoided. If you are using MATLAB then help sparse, help spdiags and help speye should help.

(b) You can check that aspects of your program are working by setting $\rho = 0$ and comparing with the output of scheme (i).

Question 2

(i) First run each finite-difference scheme with $N = 5$ and $\nu = \frac{1}{2}$ and, in the case of scheme (iii), $\rho = \frac{1}{4}$. Plot the solution for representative times. In particular, tabulate and plot the numerical solution θ_m^m, the analytic solution $\theta(n\delta x, m\delta t)$ and the error $\theta_m^m - \theta(n\delta x, m\delta t)$ at $t = 0.1$.

(ii) Next investigate a range of parameter values of your choice. You might like to start by considering $\nu = \frac{1}{12}, \frac{1}{6}, \frac{1}{3}, \frac{2}{3}$ and 1, and $N = 5, 20, 80$. In the case of scheme (iii) also consider $\nu = \kappa / \delta x$ (i.e. $\delta t = \kappa \delta x$) for appropriate values of κ and ρ.

(iii) Discuss the accuracy and the stability of each scheme, and how these properties vary with N, ν and ρ, e.g. are your results consistent with the theoretical order of accuracy of the scheme? Statements about accuracy and stability should be supported by selective reference to your numerical results, displayed as short tables and/or graphs. Relevant theoretical results should be cited briefly.

Comment on, and explain, any interesting features, e.g. do you notice anything in particular about the error in the case of scheme (i) with $\nu = \frac{1}{6}$ or scheme (iii) with particular choices of ρ and ν?
(iv) Explain, with justification, which scheme and parameter values you would recommend to achieve a given level of accuracy using the least computing resources.

(v) For your recommended scheme and parameter values, demonstrate that the numerical solution tends to the asymptotic limit (1) as $t \to \infty$.

References

