
23 Astrophysics

23.4 Stellar Structure (8 units)

This project is concerned with the structure of stars. All relevant equations are defined and
explained in the project itself, and hence no course in Part II of the Mathematical Tripos is
a pre-requisite. For those students taking Part II of the Astrophysics Tripos, knowledge of the
‘Structure and Evolution of Stars’ course is useful.

1 Introduction

The physics of stars can be encapsulated in a set of differential equations which can be solved
with appropriate boundary conditions. The most efficient method of solving the equations is by
a relaxation technique. In order to converge, it relies on an initial guess to the solution that is
not far from the actual solution. In this project we construct such an initial model of a star by a
shooting technique that directly integrates the equations from the boundaries, where conditions
are varied, until the two solutions meet in the middle.

2 The Equations of Stellar Structure

The structure of a spherically symmetric star of uniform and unchanging composition, in thermal
equilibrium, can be described by four non-linear differential equations in five variables together
with an equation of state and boundary conditions.

1) Hydrostatic Equilibrium,
dp

dr
= −ρGm

r2
, (1)

where p is the pressure and ρ the density at radius r, measured from the centre, m is the mass
interior to r and G is Newton’s gravitational constant (6.6726× 10−11 m3kg−1s−2) .

2) Mass continuity,
dm

dr
= 4πr2ρ. (2)

3) Energy generation,
dLr
dr

= 4πr2ρε, (3)

where Lr is the luminosity, the outward flow of energy through a sphere at radius r, and

ε = ε(ρ, T, composition) (4)

is the energy generation rate per unit mass.

4) Energy can be transported by radiation (or equivalently conduction) or by bulk convective
motions. In the radiative case

dT

dr
= − 3κρLr

16πacr2T 3
, (5)

where
κ = κ(ρ, T, composition) (6)

is the opacity, a is the radiation constant (7.5646× 10−16J m−3K−4) and c the speed of light in
a vacuum (2.9979× 108 m s−1).
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The equation of state relates pressure to density, temperature and composition throughout the
star,

p = p(ρ, T, composition). (7)

Appropriate boundary conditions at the centre are

m = 0, Lr = 0 at r = 0. (8)

At the surface, r = R∗, the radius of the photosphere, an Eddington approximation to a plane
parallel grey∗ atmosphere leads to

L∗ = 4πR2
∗σT

4, (9)

where σ = ac/4 is the Stefan–Boltzmann constant, L∗ is the bolometric luminosity of the star
and

pκ =
2

3

GM∗
R2

∗
, (10)

where M∗ is the stellar mass. There are four independent variables p(r), m(r), Lr and T (r),
when ρ(r) is determined by equation (7), for which a unique solution can be found.

2.1 Choice of variables

In practice it is better to use m rather than r as independent variable and, for uniform com-
position, the solution is unique for a given stellar mass. We then apply the surface boundary
conditions at m = M∗.

Question 1 Find the derivatives with respect to m of the new dependent variables,
r3, Lr, T

4 and ln p.

2.2 Equations at the centre

As they stand the equations are not suitable for numerical integration at the centre. It is
therefore necessary to develop them to obtain conditions at some small but finite value of r.

Question 2 Develop the differential equations obtained in Question 1 at the centre
to obtain equations such as

p = pc −
2

3
πGρ2

cr
2 (11)

for small r, where pc and ρc are the central values. Do not forget to take account of the
central boundary conditions.

3 The Physics of the Equation of State, Energy Generation and
Opacity

For the purposes of this project we shall assume that stars are composed entirely of hydrogen
(mass fraction X, assumed to be 0.7 throughout this project) and helium (mass fraction Y =
1−X) and that the contributions to pressure, other than that of the perfect gas, are negligible
so that

p =
ρR∗T

µ
, (12)

∗A grey atmosphere is one in which the opacity is independent of wavelength.
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where R∗ is the gas constant (8.3145× 103 J kg−1 K−1) and µ is the mean molecular weight. It
is sufficient to calculate µ on the assumption that the material is completely ionized so that

1

µ
= 2X +

3

4
Y. (13)

The same applies to γ (see question 4), the adiabatic exponent, which may be taken to be
constant at 5

3 for a monatomic ideal gas. We shall further assume that the opacity, κ, may be
approximated by the contribution from electron scattering

κes = 0.02(1 +X)m2 kg−1. (14)

Finally we assume that nuclear burning proceeds via a combination of the proton-proton chain
and CNO cycle, producing energy at a rate

ε =
(

0.25X2e−33.8T
−1/3
6 + 8.8× 1018Xe−152.28T

−1/3
6

)
T
−2/3
6

ρ

kg m−3
W kg−1 (15)

where T6 = T/106 K.

Question 3 The Sun is observed to have mass M� = 1.9891 × 1030 kg, radius R� =
6.9598× 108 m and luminosity L� = 3.8515× 1026 W. Estimate the temperature at which
nuclear reactions can halt the gravitational collapse of a solar mass star and argue that
this is a good initial guess for Tc. Also, make a linear approximation to the pressure
gradient through the Sun, choosing a sensible boundary condition for the pressure at the
the stellar surface, to obtain an estimate of the central pressure pc.

4 A Shooting Solution

We are now set up to find a numerical solution to the equations. A logical way to proceed is
to guess central values of the variables, Tc and pc and integrate the equations to the surface
where the solution will not necessarily fit the boundary conditions. Unfortunately, it turns out
that such direct integrations either from the centre to the surface or from the surface to the
centre diverge unacceptably at the surface or the centre for small changes in the undetermined
boundary variables (the equations are non-linear). They are, however, well behaved in between.
We can therefore integrate both outwards from the centre and inwards from the surface (guessing
the radius r = R∗ and luminosity Lr = L∗ at m = M∗) and meet at some point in the interior
m = Ms. We can then vary R∗, L∗, pc and Tc until the two solutions are continuous at
m = Ms. Hint: The boundary conditions need to be specified at the centre (Mr = 0) and surface
(Mr = M∗), then quantities found from solving the model ODEs.

The questions below seek solutions for a star of mass 3M�.

Question 4 Use the shooting method to solve for a simplified stellar structure from
equations (1) and (2). Just for this question, make the approximation that T ∝ ργ−1,
and take the radius of the star to be R∗ = 1.5R�. Integrate both inwards and outwards
to some suitable intermediate point (e.g., Ms = 0.5M). Describe how the boundary
conditions at the surface and centre are implemented in your integrations. Using the
differences of the dependent variables at Ms as a measure of the quality of the fit, discuss
how the fit varies with pc and Tc and use this knowledge to find values for pc and Tc that
match the dependent variables at Ms to within 1% of their values there. Provide a plot
with your best solution. Also indicate on this plot how the solution changes with pc and
Tc.
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Question 5 Now include equations (3), (5) and the associated boundary conditions to
implement the shooting method to find a more detailed stellar structure model. Describe
how the new boundary conditions differ from those used in question 4. From question 4
you have a reasonable first estimate for pc, Tc and R∗, but an estimate of L∗ is required
because a 3M� star is significantly brighter than the Sun. An estimate may be made by
shooting inwards from the surface to close to the centre using the complete set of equations.
Discuss, and illustrate concisely, how the values of each of the dependent variables close
to the centre vary as L∗ is varied. Use this knowledge to give an estimate of L∗. Hint:
When do the estimates of L∗ become unphysical?

Question 6 Now shoot both in and out to an intermediate point, and as before, use
the differences of the dependent variables at that point to determine the quality of the
solution. Use your initial estimates for R∗, L∗, pc and Tc, and your observations of how
the fit changes as these parameters are varied, to describe how to obtain by hand a relative
difference in the dependent variables at Ms that is less than 10%. Provide your best-fitting
parameters, the relative difference in each of the dependent variables at Ms and a plot of
each dependent variable against m.

Adjusting the solution by hand is not a very effective way of refining the parameters to get an
accurate solution. Let ∆xi(R∗, L∗, pc, Tc), i ∈ 1, 2, 3, 4 be the differences between the inward
and outward values of each variable xi at the intermediate point. A better estimate for these
parameters can be found by applying the correction (∆R∗,∆L∗,∆pc,∆Tc) from the solution to
the matrix equation:

∂∆x1
∂R∗

∂∆x1
∂L∗

∂∆x1
∂pc

∂∆x1
∂Tc

∂∆x2
∂R∗

∂∆x2
∂L∗

∂∆x2
∂pc

∂∆x2
∂Tc

∂∆x3
∂R∗

∂∆x3
∂L∗

∂∆x3
∂pc

∂∆x3
∂Tc

∂∆x4
∂R∗

∂∆x4
∂L∗

∂∆x4
∂pc

∂∆x4
∂Tc




∆R∗
∆L∗
∆pc

∆Tc

 = −


∆x1

∆x2

∆x3

∆x4


(R∗,L∗,pc,Tc)

, (16)

where ∂∆xi
∂R∗

can be determined by computing ∆xi(R∗ + dR∗, L∗, pc, Tc), and likewise for the
other partial derivatives. This procedure can be iterated until a desired accuracy is achieved.

Question 7 Implement the matrix method described above and iterate until the pa-
rameters are accurate to within four significant figures. Provide plots of each variable
with respect to m, a table with the values of each variable at the meeting point and your
values of the parameters. Hint: You may need to rescale the variables and parameters so
that the matrix is well-conditioned and the inversion is stable.

Question 8 The model you find does not agree with observations of such stars. Sug-
gest what needs to be added to the model to make it more realistic.
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