Contents

Introduction

1 Numerical Methods
1.1 Fourier Transforms of Bessel Functions 6
1.6 Multigrid Methods 10

2 Waves
2.2 Dispersion 7
2.11 Fisher’s Equation for Population Dispersal Problems 9

3 Fluid and Solid Mechanics
3.4 Convection of Magnetic Flux 10
3.10 Smoke Rings 8

4 Dynamics
4.5 Euler’s Equations 8

5 Quantum Mechanics
5.2 S-Wave Scattering 7
5.3 Bound State Energies for One-Dimensional Potentials 9

7 Mathematical Methods
7.3 Minimisation Methods 8
7.4 Airy Functions and Stokes’ Phenomenon 9

9 Operational Research
9.1 Policy Improvement for a Markov Decision Process 4
9.4 Option Pricing in Mathematical Finance 6

10 Statistics
10.15 Variable Selection and the Bias-Variance Tradeoff 8
10.16 The Tennis Modelling Challenge 8
You may choose freely from the projects above, independently of whether you are studying the examinable courses with which your chosen projects are connected. For up-to-date information on the maximum credit for the Computational Projects in Part II of the Mathematical Tripos, and the total number of units required to achieve that maximum, please consult both the Undergraduate Schedules of the Mathematical Tripos and §2.1 of the Introduction. Please also see §2.1 of the Introduction for more information on how credit is awarded.